废水可生化性评价的基本原理是什么?

微生物对有机污染物的好氧降解过程中,除cod(chemicaloxygendemand化学需氧量)、bod(biologicaloxygendemand生化需氧量)等水质指标的变化外,同时伴随着o2的消耗和co2的生成。
好氧呼吸参量法是就是利用上述事实,通过测定cod、bod等水质指标的变化以及呼吸代谢过程中的o2或co2含量(或消耗、生成速率)的变化来确定某种有机污染物(或废水)可生化性的判定方法。根据所采用的水质指标,主要可以分为:水质指标评价法、微生物呼吸曲线法、co2生成量测定法。
1、水质指标评价法
bod5/codcr比值法是经典、也是目前为常用的一种评价废水可生化性的水质指标评价法。
bod是指有氧条件下好氧微生物分解利用废水中有机污染物进行新陈代谢过程中所消耗的氧量,我们通常是将bod5(五天生化需氧量)直接代表废水中可生物降解的那部分有机物。codcr是指利用化学氧化剂(k2cr2o7)氧化废水中有机污染物过程中所消耗氧的量,通常将codcr代表废水中有机污染物的总量。
传统观点认为bod5/codcr,即b/c比值体现了废水中可生物降解的有机污染物占有机污染物总量的比例,从而可以用该值来评价废水在好氧条件下的微生物可降解性。在一般情况下,bod5/cod值愈大,说明废水可生物处理性愈好。综合国内外的研究结果,可参照表--【废水可生化性评价参考数据】所列数据评价废水的可生化性。
在各种有机污染指标中,总有机碳(toc)、总需氧量(tod)等指标与cod相比,能够更为快速地通过仪器测定,且测定过程更加可靠,可以更加准确地反映出废水中有机污染物的含量。随着近几年来上述指标测定方法的发展、改进,国外多采用bod/tod及bod/toc的比值作为废水可生化性判定指标,并给出了一系列的标准。但无论bod/cod、bod/tod或者bod/toc,方法的主要原理都是通过测定可生物降解的有机物(bod)占总有机物(cod、tod或toc)的比例来判定废水可生化性的。
该种判定方法的主要优点在于:bod、cod等水质指标的意义已被广泛了解和接受,且测定方法成熟,所需仪器简单。
但该判定方法也存在明显不足,导致该种方法在应用过程中有较大的局限性。首先,bod本身是一个经验参数,必须在严格一致的测试条件下才能比较它们的重现性和可比性。测试条件的任何偏差都将导致不稳定的测试结果,稀释过程、分析者的经验以及接种材料的变化都可以导致bod测试的较大误差,同时,我们又很难找到一个标准接种材料来检验所接种的微生物究竟带来多大的误差,也不知道究竟哪一个测量值更接近于真值。实际上,不同实验室对同一水样的bod测试的结果重现性很差,其原因可能在于稀释水的制备过程或不同实验室具体操作差异所带来的误差;其次,国内外学者对各类工业废水和城市污水的bod与cod数值做了大量的测定工作,并确定了能表征两者相关性的关系式:
cod=a+bbod式中:a=codnb,b=codb/bod
codnb—不能被生物降解的那部分有机物的cod值;
codb—能被生物降解的那部分有机物的cod值。
根据公式可以看出,bod/cod值不能表示可生物降解的有机物占全部有机物的比值,只有当a值为零时废水的bod/cod比值才是常数;,废水的某些性质也会使采用该种方法判定废水可生化性产生误差甚至得到相反的结论,如:bod无法反映废水中有害有毒物质对于微生物的抑制作用,当废水中含有降解缓慢的有机污染物悬浮、胶体污染物时,bod与cod之间不存在良好的相关性。
在使用此法时,应注意以下几个问题。
1)某些废水中含有的悬浮性有机固体容易在cod的测定中被重铬酸钾氧化,并以cod的形式表现出来。但在bod反应瓶中受物理形态限制,bod数值较低,致使bod5/cod值减小,而实际上悬浮有机固体可通过生物絮凝作用去除,继之可经胞外酶水解后进入细胞内被氧化,其bod5/cod值虽小,可生物处理性却不差。
2)cod测定值中包含了废水中某些无机还原性物质(如硫化物、亚硫酸盐、亚硝酸盐、亚铁离子等)所消耗的氧量,bod5测定值中也包括硫化物、亚硫酸盐、亚铁离子所消耗的氧量。但由于cod与bod5测定方法不同,这些无机还原性物质在测定时的终态浓度及状态都不尽相同,亦即在两种测定方法中所消耗的氧量不同,从而直接影响bod5和cod的测定值及其比值。
3)重铬酸钾在酸性条件下的氧化能力很强,在大多数情况下,cod值可近似代表废水中全部有机物的含量。但有些化合物如吡啶不被重铬酸钾氧化,不能以cod的形式表现出需氧量,但却可能在微生物作用下被氧化,以bod5的形式表现出需氧量,因此对bod5/cod值产生很大影响。
综上所述,废水的bod5/cod值不可能直接等于可生物降解的有机物占全部有机物的百分数,所以,用bod5/cod值来评价废水的生物处理可行件尽管方便,但比较粗糙,欲做出准确的结论,还应辅以生物处理的模型实验。
2、微生物呼吸曲线法
微生物呼吸曲线是以时间为横坐标,以生化反应过程中的耗氧量为纵坐标作图得到的一条曲线,曲线特征主要取决于废水中有机物的性质。测定耗氧速度的仪器有瓦勃氏呼吸仪和电式溶解氧测定仪。
微生物内源呼吸曲线:当微生物进入内源呼吸期时,耗氧速率恒定,耗氧量与时间呈正比,在微生物呼吸曲线图上表现为一条过坐标原点的直线,其斜率即表示内源呼吸时耗氧速率。如图1所示,比较微生物呼吸曲线与微生物内源呼吸曲线,曲线a位于微生物内源呼吸曲线上部,表明废水中的有机污染物能被微生物降解,耗氧速率大于内源呼吸时的耗氧速率,经一段时间曲线a与内源呼吸线几乎平行,表明基质的生物降解已基本完成,微生物进入内源呼吸阶段;曲线b与微生物内源呼吸曲线重合,表明废水中的有机污染物不能被微生物降解,但也未对微生物产生抑制作用,微生物维持内源呼吸,曲线c位于微生物内源呼吸曲线下端,耗氧速率小于内源呼吸时的耗氧速率,表明废水中的有机污染物不能被微生物降解,而且对微生物具有抑制或毒害作用,微生物呼吸曲线一旦与横坐标重合,则说明微生物的呼吸已停止,死亡。将微生物呼吸曲线图的横坐标改为基质浓度,则变为另一种可生化性判定方法—耗氧曲线法,虽然图的含义不同,但是与微生物呼吸曲线法的原理和实验方法是一致的。
该种判定方法与其他方法相比,操作简单、实验周期短,可以满足大批量数据的测定。但必须指出,用此种方法来评价废水的可生化性、必须对微生物的来源、浓度、驯化和有机污染物的浓度及反应时间等条件作严格的规定,加之测定所需的仪器在国内的普及率不高,因此在国内的应用并不广泛。
3、co2生成量测定法
微生物在降解污染物的过程中,在消耗废水中o2的同时会生成相应数量的co2。因此,通过测定生化反应过程co2的生成量,就可以判断污染物的可生物降解性。
目前常用的方法为斯特姆测定法,反应时间为28d,可以比较co2的实际产量和理论产量来判定废水的可生化性,也可以利用co2/doc值来判定废水的可生化性。由于该种判定实验需采用特殊的仪器和方法,操作复杂,于实验室研究使用,在实际生产中的应用还未见报道。

深圳机器人产业 “工业 服务”机器人成为主旋律
2023年4月1日起实施!全国重要新规一览
如何保养气动打标机
多功能面粉称重定量分装机
核酸提取仪的操作和使用
废水可生化性评价的基本原理是什么?
橡塑管在安装中的技术规范
视频接触角测量仪方法之液滴高度/宽度法
在滚丝机上冷轧加工小模数花键轴
德国REXROTH 3DREME16P-7X/200YG24K31A1V比例减压阀功能参数
磁性分离器的原理
英国对风电是否可持续发展做研究分析
开关模拟量控制钢瓶秤仪表特征
XBD-L立式单级消防泵安装指南
什么是计算机数控系统?
一起来学习高温马弗炉的安装使用和保养注意事项
SF6气体密度继电器介绍
奥斯恩智慧茶园科学种植、实时查看农业生长趋势提供服务建设方案
环境监测中的微波消解技术:高效、准确、可靠
高压蒸汽用什么流量计